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Abstract

This paper deals with the usage of a magnetic field ori-
ented formulation that is derived from a mixed formulation
using the penalty method, which reduces the problem
to one partial differential equation. To achieve accurate
results the occurring penalty factor has to be chosen
properly. For this reason, a rule to select this parameter
is developed for linear and nonlinear material laws. It
is shown that it yields good results when compared to
measurements provided by the TEAM problem 13.

1 Introduction

Formulations based on the magnetic field intensity have
been a big topic in research [1], since they use the
magnetic field intensity as a main unknown and therefore
give direct access to the field quantities. One particular
formulation of this kind is a mixed formulation [2]. The
major drawback of this formulation is its large number of
unknowns, since both involved quantities are vectors. For
this reason, a penalty method is applied to eliminate one
unknown and end up in one equation that only keeps the
degrees of freedom of the magnetic field intensity [3]. The
used perturbation technique needs a penalty factor that
has to be chosen appropriately to obtain correct results. In
this paper, a rule to choose this parameter is developed in
the linear and nonlinear case. Furthermore, the technique
how to solve the resulting nonlinear equations is shown
using the Newton-Raphson method combined with an
exact line search.

2 Finite Element Formulation

In this paper, a computational domain Ω is considered
where a magnetostatic field problem is solved. The
boundary of the region is described by ∂Ω = Γ1 ∪ Γ2

with an magnetic flux density boundary condition B ·n =
0 on Γ1 and a magnetic field intensity boundary condition
n×H = 0 on Γ2.

2.1 Mixed Formulation

Introducing a magnetic vector potential B = ∇×A to fulfil
∇ ·B = 0 and using Ampéres law ∇×H = J , where J
is the source current density, yields a mixed formulation
for the magnetostatic case: Find (H,A) ∈ H(curl,Ω) ×

H0(div
0,Ω) such that∫

Ω

B(H) ·H ′ −A · ∇ ×H ′ dV = 0 , (1a)∫
Ω

(∇×H − J) ·A′ dV = 0 , (1b)

∀H ′ ∈ H(curl,Ω) and ∀A′ ∈ H0(div
0,Ω) .

Imposing a gauge condition using Lagrange multipliers
results in a third equation which increases the number of
unknowns.

2.2 Penalty Formulation

Adding the term −(1/ρ)
∫
Ω
A ·A′ dΩ to (1b) gives

A = ρ(∇×H − J) , (2)

which can be substituted into (1a) to obtain the penalized
version of the mixed formulation: Find H ∈ H(curl,Ω)
such that∫

Ω

B(H) ·H ′ + ρ∇×H · ∇ ×H ′ dV =∫
Ω

ρJ · ∇ ×H ′ dV ∀H ′ ∈ H(curl,Ω) . (3)

In the nonlinear case, the Newton-Raphson method is
used. In doing so, the following system of equations has
to be solved

∂Ri

∂Hi
∆H = −Ri , Hi+1 = Hi + η∆H . (4)

In every Newton iteration i, the solution ∆H is added to
the previous one until the norm of the residual is small
enough (∥R∥ < ϵ = 10−12). In (4) Ri is the residual,
∂Ri/∂Hi is the Jacobian matrix of the underlying equa-
tion in the current Newton iteration and η is the line search
parameter. The Jacobian is approximated by using the
concept of the Fréchet-derivative and finite differences

∂R

∂H
∆H =

∫
Ω

µd∆H ·H ′ + ρ∇×∆H · ∇ ×H ′ dV ,

where the resulting matrix µd = ∂B(H)/∂H is obtained
from the given material law.

3 Implementation

With regard to the proposed formulation, two aspects of
the implementation need to be highlighted. These include
an appropriate choice of the penalty factor used in the
formulation and a line search technique that improves
convergence.
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3.1 Choice of the Penalty Factor
The aim of this research is to provide a rule of thumb
for direct solvers, where the accuracy of the solution
remains the same over a large range of the system matrix
condition number. To do so, the following formula as a rule
of thumb (r.o.t.) is proposed in the linear case

ρ =
2

p0.01
µr,maxµ · 10p/2 , (5)

where p is chosen small (p = 10−6). Figure 1 shows that,
when no rule is applied and simulations are performed
over a broad range of values (10−12 ≤ ρ ≤ 108) and
compared with the mixed formulation, a better accuracy
can be achieved, but it is difficult to choose exactly this
value. The scaling with the permeability µ and µr,max

allows choosing the factor such that the accuracy remains
constant.
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Fig. 1: Relative error resulting from the comparison of
the mixed formulation without (dashed line) and with the
proposed rule (full line) over a range of different linear
permeabilities.

For nonlinear materials, this rule remains the same, ex-
cept that µr,max is set to 1, since the maximum value of the
relative permeability depends on the state of the system.
To obtain useful values for the permeability, the following
relation is evaluated

µ = norm

(
∂B(H)

∂H

)
, (6)

where norm(·) corresponds to the largest singular value
of the matrix.
3.2 Determination of the Line Search Parameter
The Newton-Raphson method only converges if an appro-
priate starting value is chosen. Since this is most of the
time unknown, line search methods are used to ensure
convergence to the solution independent of the starting
point. In this work, an exact line search is used where
in every Newton iteration the energy functional E , which
minimizer is the solution of the problem, is minimized
along the Newton direction ∆H. The energy functional
E is derived w.r.t. η which gives a first order optimality
condition

∂Ei+1

∂ηi
=

(
∂Ei+1

∂Hi+1

)
∂Hi+1

∂ηi
= R(η)⊤∆Hi

!
= 0 . (7)

The root of the resulting equation, which just consists of
the residual multiplied with the current Newton direction,
is solved by using Brent’s method [4].
4 Results
To verify the implementation of the formulation, it is tested
on the TEAM problem 13 [5], where a racetrack shaped
coil is turned around some steel structure, with negligi-
ble eddy current effect. In the implementation, the pro-
vided BH-curve is approximated using B-splines, which
offers techniques to obtain ∂B(H)/∂H for the Newton-
Raphson method and for the penalty factor. In Figure
2 it can be seen that the simulation results match the
measurements quite good.

A B C D E F
0

0.5

1

1.5

flu
x

de
ns

it
y

in
T

measuerment
simulation

Fig. 2: Comparison between measurement and simulation
for TEAM problem 13 in different parts of the steel sheet.

5 Conclusion
In this paper, the penalized version of the mixed for-
mulation is solved in the nonlinear case. It is shown
that there is a working rule of thumb in the linear and
nonlinear case for selecting a proper value for the penalty
factor that gives comparable results when compared to
the initial formulation. Furthermore, a line search method
that minimizes an energy functional along the Newton
direction is employed, to obtain an improved convergence
behavior. In the full paper, this concept will be extended to
the eddy current problem and hysteretic case, where this
formulation seems to be a good candidate to incorporate
hysteresis models that use the magnetic field intensity as
the input.
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